Retención de vitamina C en el procesamiento de la pulpa de copoazú (Theobroma grandiflorum) enlatada

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.805

Palabras clave:

Theobroma grandiflorum, ácido ascórbico, pasteurización, enlatado, tratamiento térmico

Resumen

La pulpa de copoazú es un fruto de alto contenido en pectinas y ácido ascórbico cosechado en la Amazonía de América Oriental por sus características de aroma, sabor y textura. No obstante, el procesamiento de enlatado para el consumo humano en Madre de Dios (Perú) es cuestionable debido al inadecuado manejo y tratamiento térmico del fruto. El objetivo del estudio fue evaluar la estabilidad de la conservación de la vitamina C en el procesamiento de la pulpa de copoazú enlatada. Para ello, se llevó a cabo un diseño experimental en cuatro etapas: 1) caracterización del fruto, 2) determinación del tratamiento térmico, 3) análisis de la variación de vitamina C y 4) análisis de la pulpa enlatada. Se evaluó el efecto del proceso por triplicado y se aplicó un diseño completamente al azar (DCA) para analizar las diferencias estadísticas mediante el programa Statgraphys Centurion. Entre los resultados se destaca que el pH (3.05 ± 0.50) y acidez (1.54 ± 0.80) del enlatado guardan semejanza con la materia prima. Asimismo, se encontró un aumento significativo de sólidos solubles (Brix) respecto al fruto fresco. Se concluye que la retención total de vitamina C de la pulpa de copoazú enlatada fue 49.10 %.

Metrics

Descargas

La descarga de datos todavía no está disponible.

Citas

Adkison, E. C., Biasi, W. B., Bikoba, V., Holstege, D. M., & Mitcham, E. J. (2018). Effect of canning and freezing on the nutritional content of apricots. Journal of Food Science, 83(6), 1757–1761. https://doi.org/10.1111/1750-3841.14157

Ahmed, J., Ramaswamy, H. S., & Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science and Technology, 40(8), 885–895. https://doi.org/10.1111/j.1365-2621.2005.01026.x

Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(51). https://doi.org/10.1186/s40066-017-0130-8

Avila-Gaxiola, E., Delgado-Vargas, F., Zazueta-Niebla, J., López-Angulo, G., Vega-García, M., & Caro-Corrales, J. (2016). Variable retort temperature profiles for canned papaya puree. Journal of Food Process Engineering, 39(1), 11–18. https://doi.org/10.1111/jfpe.12194

Badui Dergal, S. (2006). Química de los alimentos (4.a ed.). Pearson Educación.

Bouzari, A., Holstege, D., & Barrett, D. M. (2015). Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. Journal of Agricultural and Food Chemistry, 63(3), 957–962. https://doi.org/10.1021/jf5058793

Canuto, G. A. B., Xavier, A. A. O., Neves, L. C., & Benassi, M. de T. (2010). Caracterização físico-química de polpas de frutos da Amazônia e sua correlação com a atividade anti-radical livre. Revista Brasileira de Fruticultura, 32(4), 1196–1205. https://doi.org/10.1590/S0100-29452010005000122

Cole, M. B., Augustin, M. A., Robertson, M. J., & Manners, J. M. (2018). The science of food security. npj Science of Food, 2(14). https://doi.org/10.1038/s41538-018-0021-9

Costa, M. P., Frasao, B. S., Silva, A. C. O., Freitas, M. Q., Franco, R. M., & Conte-Junior, C. A. (2015). Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. Journal of Dairy Science, 98(9), 5995–6003. https://doi.org/10.3168/jds.2015-9738

Das Neves Selis, N., De Oliveira, H. B. M., Dos Anjos, Y. B., Leão, H. F., Sampaio, B. A., Correia, T. M. L., Reis, M. M., Brito, T. L. S., Almeida, C. F., Pena, L. S. C., Brito, L. F., Ornelas, R. M., Santos, T. T., Campos, G. B., Timenetsky, J., Cruz, M. P., Da Costa, A. M., Yatsuda, R., Uetanabaro, A. P. T., & Marques, L. M. (2021). Gardnerella vaginalis and Neisseria gonorrhoeae are effectively inhibited by lactobacilli with probiotic properties isolated from Brazilian cupuaçu (Theobroma grandiflorum) Fruit. BioMed Research International, 2021, 1–15, artículo 6626249. https://doi.org/10.1155/2021/6626249

De Oliveira, P. D., Da Silva, D. A., Pires, W. P., Bezerra, C. V., Da Silva, L. H. M., & Da Cruz Rodrigues, A. M. (2021). Enzymatic interesterification effect on the physicochemical and technological properties of cupuassu seed fat and inaja pulp oil blends. Food Research International, 145, artículo 110384. https://doi.org/10.1016/j.foodres.2021.110384

Emelike, N. J. T., & Ebere, O. C. (2015). Effect of packaging materials, storage conditions on the vitamin C and pH value of cashew apple (Anacardium occidentale L.) juice. Journal of Food and Nutrition Sciences, 3(4), 160–165. https://doi.org/10.11648/j.jfns.20150304.14

Ghoshal, G. (2018). Emerging Food Processing Technologies. En Food Processing for Increased Quality and Consumption (pp. 29–65). Elsevier. https://doi.org/10.1016/B978-0-12-811447-6.00002-3

Gondim, T. M. de S., Thomazini, M. J., Cavalcante, M. de J. B., & Souza, J. M. L. (2001). Aspectos da produção de cupuaçu. Documento 67. Embrapa Acre. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/498481/1/doc67.pdf

Hurtado, P. (1987). Procesos tecnológicos de conservación de frutas y hortalizas y su almacenamiento. Cartagena, Colombia.

Maciel, R. M. G., Lima, S. B., Costa, J. M. C., & Afonso, M. R. A. (2020). Influência da maltodextrina nas propriedades de escoamento do pó da polpa de cupuaçu. Brazilian Journal of Development, 6(2), 5829–5839. https://doi.org/10.34117/bjdv6n2-039

Maeda, E. E., & Mussa, D. M. D. N. (1986). The stability of vitamin C (L-ascorbic acid) in bottled and canned orange juice. Food Chemistry, 22(1), 51–58. https://doi.org/10.1016/0308-8146(86)90008-7

McGinnis, M. J., Gustashaw, K. A. R., & Painter, J. E. (2020). Fruit myth or fact. Nutrition Today, 55(6), 322–327. https://doi.org/10.1097/NT.0000000000000447

NTS No 071-MINSA/DIGESA-V.01 (2008) Norma sanitaria que establece los criterios microbiológicos de la calidad sanitaria e inocuidad para los alimentos y bebidas de consumo humano. Resolución Ministerial No 591-2008/MINSA, 27 de agosto. https://bit.ly/3ub9mig

Ordóñez-Santos, L. E., & Vázquez-Riascos, A. (2010). Effect of processing and storage time on the vitamin C and lycopene contents of nectar of pink guava (Psidium guajava L.). Archivos Latinoamericanos de Nutrición, 60(3). https://www.alanrevista.org/ediciones/2010/3/art-10/

Peña Valdeiglesia, J., & Alegre Orihuela, J. C. (2017). Tipificación de prototipos de sistemas de producción agroforestal en la provincia de Tambopata, Madre de Dios. Aporte Santiaguino, 10(2), 233–244. https://doi.org/10.32911/as.2017.v10.n2.166

Pereira, Ana L. F., Abreu, V. K. G., & Rodrigues, S. (2018). Cupuassu—Theobroma grandiflorum. Exotic Fruits, 159–162. https://doi.org/10.1016/b978-0-12-803138-4.00021-6

Pereira, Ana Lúcia Fernandes, Feitosa, W. S. C., Abreu, V. K. G., Lemos, T. de O., Gomes, W. F., Narain, N., & Rodrigues, S. (2017). Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Research International, 100(part 1), 603–611. https://doi.org/10.1016/j.foodres.2017.07.055

Pokorny, J. (2005). Antioxidantes de los alimentos: Aplicaciones prácticas. Acribia.

Pugliese, A. G., Tomas-Barberan, F. A., Truchado, P., & Genovese, M. I. (2013). Flavonoids, Proanthocyanidins, vitamin C, and antioxidant activity of Theobroma grandiflorum (cupuassu) pulp and seeds. Journal of Agricultural and Food Chemistry, 61(11), 2720–2728. https://doi.org/10.1021/jf304349u

Ramos, S., Salazar, M., Nascimento, L., Carazzolle, M., Pereira, G., Delforno, T., Nascimento, M., De Aleluia, T., Celeghini, R., & Efraim, P. (2020). Influence of pulp on the microbial diversity during cupuassu fermentation. International Journal of Food Microbiology, 318, artículo 108465. https://doi.org/10.1016/j.ijfoodmicro.2019.108465

Salgado, J. M., Rodrigues, B. S., Donado-Pestana, C. M., Dos Santos Dias, C. T., & Morzelle, M. C. (2011). Cupuassu (Theobroma grandiflorum) peel as potential source of dietary fiber and phytochemicals in whole-bread preparations. Plant Foods for Human Nutrition, 66(4), 384–390. https://doi.org/10.1007/s11130-011-0254-0

Sharma, S. K., Mulvaney, S. J., & Rizvi, S. S. H. (2003). Ingeniería de alimentos: Operaciones unitarias y prácticas de laboratorio. Limusa.

Silva, A. G. M., Lima, S. C. G., De Oliveira, P. D., Moraes, M. Dos S., Guimarães, C. M. C., Silva, J. A. R., Garcia, A. R., Nahúm, B. de S., Neres, L. de S., Noronha, G. N., & Lourenço Júnior, J. de B. (2021). Production, chemical composition, and fatty acid profile of milk from buffaloes fed with cupuaçu (Theobroma grandiflorum) cake and murumuru (Astrocaryum murumuru) cake in the Eastern Amazon. Animal Science Journal, 92(1), artículo e13576. https://doi.org/10.1111/asj.13576

Stumbo, R. (1973). Thermobacteriology in food processing (2.a ed.). Academic Press.

Tenea, G. N., & Ortega, C. (2021). Genome characterization of Lactiplantibacillus plantarum strain UTNGt2 originated from Theobroma grandiflorum (white cacao) of Ecuadorian Amazon: Antimicrobial peptides from safety to potential applications. Antibiotics, 10(4), 383. https://doi.org/10.3390/antibiotics10040383

Titus, D., James Jebaseelan Samuel, E., & Mohana Roopan, S. (2018). Importance of food science and technology-way to future. En S. M. Roopan & G. Madhumitha (Eds.), Bioorganic phase in natural food: An overview (pp. 11–23). Springer. https://doi.org/10.1007/978-3-319-74210-6_2

Valencia Sullca, C. E., & Guevara Pérez, A. (2013). Variación de la capacidad antioxidante y compuestos bioactivos durante el procesamiento del néctar de zarzamora (Rubus fructicosus L.). Revista de la Sociedad Química del Perú, 79(2). http://www.scielo.org.pe/pdf/rsqp/v79n2/a04v79n2.pdf

Vieira, M. C., Teixeira, A. A., & Silva, C. L. M. (2000). Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar. Journal of Food Engineering, 43(1), 1–7. https://doi.org/10.1016/S0260-8774(99)00121-1

Vieira, M. C., Teixeira, A. A., & Silva, C. L. M. (2001). Kinetic parameters estimation for ascorbic acid degradation in fruit nectar using the Partial Equivalent Isothermal Exposures (PEIE) Method under non-isothermal continuous heating conditions. Biotechnology Progress, 17(1), 175–181. https://doi.org/10.1021/bp000132w

Vriesmann, L. C., & De Oliveira Petkowicz, C. L. (2009). Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction. Carbohydrate Polymers, 77(1), 72–79. https://doi.org/10.1016/j.carbpol.2008.

Publicado

2022-04-01

Cómo citar

Tecse-Tecsi, R., Mego-Mego, V., Chávez-Pinchi, M. ., Cutipa-Chávez, L. ., & Vargas-Vásquez, L. . (2022). Retención de vitamina C en el procesamiento de la pulpa de copoazú (Theobroma grandiflorum) enlatada. Enfoque UTE, 13(2), pp. 17 - 30. https://doi.org/10.29019/enfoqueute.805

Número

Sección

Misceláneos